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measurement, theory of. Most mathematical sciences use 
quantitative models, and the theory of measurement is devoted 
to making explicit the qualitative assumptions that give rise to 
them. This is accomplished by first stating the qualitative 
assumptions - empirical laws of the most elementary sort - in 
axiomatic form and then showing that there are structure 
preserving mappings, often but not always isomorphisms, 
from the qualitative structure into the quantitative one. The 
set of such mappings forms what is called a scale of 
measurement. 

A theory of the possible numerical scales plays an important 
role throughout measurement - and therefore throughout 
science - since, just as the qualitative assumptions of a class of 
structures narrowly determine the nature of the possible scales, 
so also the nature of the underlying scales greatly limits the 
possible qualitative structures that give rise to such scales. Our 
two major themes, which reflect relatively new research results, 
are, first, that the possible scales that are useful in science are 
necessarily very limited and, second that once a type of scale is 
selected (or assumed to exist) for a qualitative structure, then a 
great deal is known about that structure and its quantitative 
models. 

There are several general references to the axiomatic theory. 
Perhaps the most elementary and the one with the most 
examples is Roberts (1979). Pfanzagl (1968) and Krantz et al. 
(1971) are on a par, with the latter more comprehensive. 
Narens (1985) is the mathematically most sophisticated, and 
covers much of the material mentioned here. We cite only 
references not included in one of these surveys. 

AXIOMATIZABILITY 

The Qualitative Setup. The qualitative situation is usually 
conceptualized as a relational structure X = (X, So, S , ,  . . .), 
where the So, S , ,  . . . are relations of finite order on X. The set 
of relations can be either finite or infinite. Xis called the domain 
of the structure and the S, its primitive relations. In most 
applications, So will be some type of ordering relation, and 
when this is the case it will be written as 2 .  The following are 
some examples of qualitative structures used in measurement 
situations. The first, which goes back to Helmholtz, has for its 
domain a set X of objects with the property of having mass. 
There are two primitive relations. The first, 2 ,  is a binary 
ordering according to mass (which may be determined, for 
example, by using an equal-arm pan balance so that x 2 y  
means that the pans either remain level or the one containing 
x drops). The second relation, 0, is a ternary one that can be 
interpreted as a binary operation. Empirically, it is defined as 
follows: if x and y are placed in the same pan and are exactly 
balanced by z, then we write x ~y - z, where - means 
equivalence in the attribute. The structure (X, 2 , o )  was used 
by Helmholtz in developing an axiomatic treatment of the 
measurement of mass. 

A second example is from economics. Suppose C,, . . . , C, are 
sets each consisting of different amounts of a commodity, and 
2 is a preference ordering e h b i t e d  by a person or an insti- 
tution over the set of possible commodity bundles C = X,C,. 
The resulting structure d = (C, k ) ,  known as a conjoint one, 
can among other things be used to induce ordering of an 
individual's preferences for the commodities associated with 
each component. 

The third example, due to B. de Finetti, has as its domain an 
algebra B of subsets, called 'events', of some non-empty set R. 
The primitives of the structure consist of an ordering relation 
2 of 'at least as likely as', the events R and 0, and the set 

theoretical operations of union U, intersection fl, and com- 
plementation - . The relational structure 

is intended to characterize qualitatively probability-like situa- 
tions. The primitive 2 can arise from many different processes, 
depending upon the situation. In one, which is of considerable 
importance to Bayesians, 2 represents a person's ordering of 
events according to how likely they seem using whatever basis 
he or she wishes in making the judgements. In such a case, 9; 
is thought of as a subjective or personal probability structure. 
In another 2 is based on some probability model for the situa- 
tion (possibly one coupled with estimated relative frequencies), 
as in much of classical probability theory. 

Representations and Scales. A key notion in the theory of 
measurement is that of a representation, which is defined to be 
a structure preserving map 4 of the qualitatice relational 
structure X into a quantitative one, 9 ,  in which the domain is 
a subset of the real numbers. Representations are either 
isomorphisms or in cases where equivalences play an 
important role (e.g. conjoint structures where trade-off 
between components is the essence of the matter) as 
homomorphisms, in which case equivalence classes of 
equivalent elements are assigned the same number. We say '4 
is a 9-representation for T .  

For the past three decades, measurement theorists have been 
exploring certain types of qualitative structures for which 
numerical representations exist. The questions faced are, first, 
to establish that the set of 9-representations is non-empty for 
The primitives of the structure consist of an ordering relation 
2 of 'at least as likely as', the events R and 0, and the set 
generate all of them once one is specified. The first is called the 
'existence' problem and the second, the 'uniqueness' problem. 
Several examples will be cited. 

For the qualitative mass structure X = (X, 2 , a )  described 
above, the qualitative representing structure is taken to be 
9 = (Re+, >, +), where Re+ is the positive real numbers, and 
> and + have their usual meanings in the real number system. 
The set of 9-representations of X consist of all functions 4 
from X into Re+ such that for each x and y in X, (i) x 2 y  iff 
4(x)  2 +(y), and (ii) 4(x  oy) = 4(x)  + 4(y).  Such a function 
is called a homomorph~m, and the set of all of them is called 
a scale. In addition to Helmholtz, others including 0 .  Holder, 
P. Suppes, Luce and A. A. J. Marley and J.-C. Falmagne have 
stated axioms about the primitives of X that are sufficient to 
show the existence of such homomorphisms and to show that 
any two homomorphisms 4 and + are related by multiplication, 
that is, there is some real r > O  such that + = r 4 .  In the 
language introduced later by S. S. Stevens (1946), such a form 
of measurement is said to be a 'ratio scale'. For the case where 
0 is an operation (defined for all pairs), F. S. Roberts (1979) 
and Luce and Narens (1985) have given necessary and sufficient 
conditions for such a representation. A complete characteriz- 
ation, such as this one, is rather unusual in measurement; 
sufficient conditions are far more the rule. 

Representations of the structure V = (X,C,, 2) of com- 
modity bundles are usually taken in economics to be n-tuples 
(4 , ,  . . . ,4 , )  of functions, where 4, maps C, into Re, such that 
for each x,, y, in C,, i = 1, . . . , n, 

In the measurement literature such a representation is called 
'additive'. G. Debreu, Luce and J. W. Tukey, D. Scott, 
A. Tversky and others, have given axioms on V for which 
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existence of an additive representation can be shown, and 
that any two representations (4,, . . . ,4,) and (+,, . . . , +.) 
are related by f i n e  transformations of the form 
+i = + si, i = 1, . . . , n, r > 0. In Stevens's nomenclature, the 
set of such representations are said to form an 'interval scale'. 

In the example of the subjective probability structure 
9 = (8, 2 ,  R, 0, U, n, - ), the usual sort of representation is 
a probability function P from 8 into [0, 11, that is, for all A, B 
in 8 ,  (i) P(R) = 1, P ( 0 )  = 0, (ii) A 2 B iff P(A) > P(B), (iii) if 
A n B = 0, then P(A U B) = P(A) + P(B). 

A number of authors have given sufficient conditions in 
terms of the primitives for P to exist. Fine (1973) gives a good 
summary of a variety of approaches to probability, In the 
probability case, unlike the previous two, if P and Q are two 
representations for 9, then P= Q; that is, the representation is 
uniquely determined. Such scales were called 'absolute' by 
Stevens. 

Empirical Usefulness of Axiomatic Treatments. One advantage 
of a measurement approach to some scientific questions is that 
it offers an alternative way of testing quantitative models other 
than simple goodness of fit. Since the axiomatic approach 
isolates a series of properties that are in some sense thought to 
be basic, it leads to the validation or invalidation of specific 
axioms rather than the entire model. In particular, this 
approach often makes clear where the source of the problem is 
and thus gives insight into how the model must be altered. An 
example of this, familiar to economists, has arisen in the 
theory of subjective expected utility. In its simplest form the 
domain is gambles of the form x 0.y in which x is the outcome 
if event A occurs and y if A fails to occur, where x and y may 
themselves be gambles, and the theory postulates a preference 
ordering 2 over the outcomes and gambles. The classical 
axiomatization (for a summary, see Fishburn, 1970) establishes 
conditions on preferences over gambles so that there exists a 
probability measure P on the algebra of events, as in a 
probability structure, and a 'utility function' U over the 
gambles such that U preserves 2 and 

A series of empirical studies (for summaries see Allais and 
Hagen, 1979, and Kahneman and Tversky, 1979) have made 
clear that this representation, which can be readily defended 
on grounds of rationality, is inadequate to describe human 
behaviour. Among its axioms, the one that appears to be the 
major source of difficulty is the 'extended sure-thing principle'. 
It may be stated as follows: suppose A, B and C are events, 
with C disjoint from A and B, then 

x0.y 2 x 0 , ~  i f f  x ~,,,y k x  o,,,y. (2) 

It is easy to verify that this is a necessary condition if equation 
(1) holds, and it seems to be one that people are unwilling to 
abide by. Any modification of the theory that is to be 
descriptive of human behaviour must abandon it. 

A related example of the interplay of axioms and data, also 
of interest to economists, is the measurement of risk 
(references can be found in Weber, 1984; Luce and Weber, 
1986). 

It must be acknowledged that the isolation of properties in 
the axiomatic approach has an apparently happenstance 
quality. The choice of axioms for an empirical structure is by 
no means uniquely determined; there is an infinity of 
equivalent axiom systems for any infinite structure, and it is by 
no means clear why we tend to select the ones we do. It is 
entirely possible for the failure of the model to be described 
easily in terms of one axiomatization, and to be totally obscure 

in another. Furthermore, not everyone values the overall 
axiomatic approach to scientific (in contrast to mathematical) 
questions; in particular, it has been sharply attacked by 
Anderson (1 98 1, pp. 347-56). 

Another use of axiomatic methods and of the notion of scale 
(see Representations and Scales above) is in the study of 
meaningfulness, which is treated under  MEANINGFUL^ AND 
INVARIANCE. 

2. ORDERED STRUCTURES 

Two types of 'quantitative' representations have played a 
major role in science: systems of coordinate geometry and the 
real number system (the latter being the one-dimensional 
specialization of the former). The latter is our focus. The 
absolutely simplest case, included in all of the above examples, 
is the representation of (X, 2 )  into (Re, a ) ,  that is, the case 
where there is a mapping 4 from X into Re such that x 2 y 
iff 4(x)  4(y). It follows readily that in such situations 2 
must be transitive, connected, and reflexive. Such relations are 
given many different names including weak order. When a weak 
order is antisymmetric, it is called a totalor simple order. Cantor 
showed that necessary and sufficient conditions for (X, 2) to 
be represented in (Re, 2 ) are that 2 be a weak order and there 
be a finite or countable dense subset Y of X that is order dense 
in X (i.e. for each x >z, there exists a y in Y such that 
x > y > z). For many purposes, this subset plays the same role 
as do the rational numbers within the system of real numbers. 

In order for the representation to be onto either (Re, >) or 
(Re', >), which is often the case in physical measurement, 
two additional conditions are necessary and sufficient: 
Dedekind completeness (each non-empty bounded subset of X 
has a least upper bound in X) and unboundedness (there is 
neither a least nor a greatest element). 

In measurement axiomatizations, one usually does not 
postulate a countable, order-dense subset, but derives it from 
axioms that are intuitively more natural. For example, when 
there is a binary operation of combining objects, it follows 
from a number of properties including an Archimedean axiom 
which states that no object is infinitely larger than or 
infinitesimally close to another object. When the structure is 
Dedekind complete and the operation is monotonic, it is also 
Archimedean. Dedekind completeness and Archimedeaness 
are what logicians call 'second order axioms', and in principle 
they are incapable of direct empirical verification. 

The most fruitful and intensively examined measurement 
structures are those with an associative, positive binary 
operation. This has been the basis of most physical 
measurement. It has been apparent for some time that few 
important phenomena of the behavioural and social sciences 
can be modelled, directly or indirectly, in this way. The 
development of a general non-associative and non-positive 
theory began in 1976, and it is moderately well understood in 
certain symmetric situations. This, and its specialization to 
associative structures, is the focus of the rest of this entry. 

3. SCALE TYPES 

Classification. As was noted in the examples, scale type has to 
do with mappings of one numerical representation of a 
structure into other equally good ones. For some fixed 
numerical structure 9 ,  a scale of the structure 4 is the 
collection of all 9-representations of 4. Much the simplest 
case, the one to which we confine most of our attention, occurs 
when 4 is totally ordered, the domain of 9 is either Re or 
Re+, and the 9-presentations are all onto the domain and so 
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are isomorphisms. Such scales are then usually described in 
terms of the group of real transformations that take one 
representation into another. As Stevens noted, four distinct 
groups of transformations have appeared in physical 
measurement: any strictly increasing function, any linear 
function rx + s, r > 0, any similarity transformation rx, r > 0, 
and the identity map. The corresponding scales are called 
ordinal, interval, ratio, and absolute. (Throughout this entry, 
ratio scales are assumed to be onto Rei thereby ruling out 
cases were an object is assigned the number 0.) 

The first three scale types exhibit a property called 
homogeneity, namely, that for each element x in the qualitative 
structure and each real number r in the domain of 41, there is 
a representation that maps x into r. Homogeneity is typical of 
physical measurement and it plays an important role in the 
formulation of many physical laws. We may ask two general 
types of questions about it: what are the possible groups 
associated with homogeneous scales, and what are the general 
classes of structures that can yield homogeneous scales? 

It is easiest to formulate answers to these questions in terms 
of automorphisms of the qualitative structures, that is, in 
terms of isomorphisms of the structure onto itself. The 
elements of the scale and the automorphisms of the structure 
are in one-to-one correspondence, since if 4 and + are two 
representations and juxtaposition denotes function com- 
position, then is an automorphism, and if 4 is a 
representation and a is an automorphism, then, + = 4a is a 
representation. 

It is not difficult to see that homogeneity of a scale simply 
corresponds to there being an automorphism that takes any 
element of the domain of the structure into any other element. 
This can be made more specific. Let M be a positive integer, 
then 3 is said to be M-point homogeneous iff each strictly 
ordered set of M points can be mapped by an automorphism 
into any other strictly ordered set of M points. A structure 
that is not homogeneous for any positive M is said to be 
0-point homogeneour; one that is homogeneous for every finite 
M is said to be a-point homogeneous. 

Another important feature of a scale is its degree of 
redundancy, which we may formulate as follows: a scale is said 
to be N-point unique, where N is a non-negative integer, iff for 
every two representations 4 and + in the scale, if 4 and + 
agree at N distinct points, then + = 4. By this definition, ratio 
scales are I-point unique, interval scales are 2-point unique, 
and absolute scales 0-point unique. Scales, like ordinal ones, 
that take infinitely many points to determine a representation 
are said to be co-point unique. Equally, we speak of the 
structure being N-point unique iff every two automorphisms 
that agree at N distinct points are identical, and it is m-point 
unique iff it is not N-point unique for any non-negative N. 

The abstract concept of scale type can be given in terms of 
these concepts. The scale type of 9 is the pair (M, N) such that 
M is the maximum degree of homogeneity and N is the 
minimum degree of uniqueness of 9. For the cases under 
consideration, it can be shown that M 6 N. Ratio scales are of 
type (1,l) and interval scales of type (2,2). Narens (1981a.b) 
showed that the converses of both statements are true. And 
Alper (1987) showed that if M > 0 and N < co, then N = 1 or 2. 
The group in the (1,2) case consists of transformations of the 
form rx + s, where s is any real number and r is any element 
of a non-trivial, proper subgroup of the group (Re+, .). One 
example is r=kn, where k>O is fixed and n ranges over the 
integers. So a structure is homogeneous iff it is of type (1, 1). 
(1, 2), (2, 2), or (M,m). In the latter case, it is not known 
which values of M, aside from m, can occur. The ordinal case 
is (m,co). We focus on the first three cases. 

Unit Representation of Homogeneous Concatenation Structures. 
Given that we know the possible homogeneous scale types, the 
next question is: Which structures have scales of those types? 
The answer is not known completely, but for ordered 
structures with binary o@rations it is completely understood. 
This is useful since, as was noted, they play a central role in 
much physical measurement and, as we shall see below, they 
arise naturally in two distinct ways of interest to social 
scientists. 

Consider real concatenation structures of the form 
W = (Rei, 2, a'), where 2 has its usual meaning and we have 
replaced + by a general binary, numerical operation, denoted 
*', that is strictly increasing in each variable. The major result 
is that if 9 satisfies M > 0 and N < co -a  sufficient condition 
for the latter is that *' be continuous (Luce and Narens, 1985) 
-then the structure can be mapped canonically into an iso- 
morphic one that is of the form (Re+, 2, *), where there is 
a function f from Re+ onto Re+ such that (i) f is strictly 
increasing, (ii) f(x)/x is strictly decreasing, and (iii) for all x, y 
in Rei,  x y = yf(x/y) (Cohen and Narens, 1979). This type of 
canonical representation is called a unit representation. Observe 
that it is invariant under the similarities of a ratio scale: 

rx ry = ryf(rx/ry) = r[yf(x/y)] = r(x y). 

The two most familiar examples of unit representations are 
ordinary additivity, for which f(z) = 1 + z and so x y = x + y, 
and bisymmetry, for which f(z) = zc and so x y = xcy'-'. 
Situations where such representations arise are discussed later. 

The three different scale types can be distinguished by means 
of a simple property of the function f (Luce and Narens, 1985). 
Consider the values of p > 0 for which f(xP) = f(x)P for all 
x > 0. The structure is of scale type (1.1) iff p = 1; of type (1,2) 
iff for some fixed k > 0 and all integers n, p = k"; and of type 
(2,2) iff p > 0. The (2,2) condition imposes a very tight con- 
straint on f ,  namely, that there be constants c, d in (0,I) such 
that 

If, as is the usual practice in the social sciences but not in 
physics, we construct the structure on Re by taking logarithms, 
the case of the (2,2) operation becomes 

Structures leading to this dual bilinear representation are called 
dual bisymmetric (when c=d, the 'dual' is dropped). They lead 
to an interesting generalization of the theory of subjective 
expected utility for gambles (section 6). 

4. AXlOMATlZATlON OF CONCATENATION STRUCTURES 

Given this understanding of the possible representations of 
homogeneous, finitely unique concatenation structures, it is 
natural to return to the classical question of axiomatizing the 
qualitative properties that lead to such representations. Until a 
few years ago, the only two cases that were understood 
axiomatically were those leading to additivity and averaging 
(see below). We know more now, although our knowledge 
remains incomplete. 

Additive Representations. The key mathematical result under- 
lying extensive measurement, due to 0 .  Holder, states that 
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when a group operation and an ordering interlock so that the 
operation is monotonic and is Archimedean in the sense that 
sufficient copies of any positive element will exceed any fixed 
element, then the group is isomorphic to an ordered subgroup 
of the additive real numbers. Basically, the theory of extensive 
measurement restricts itself to the positive subsemigroup of 
such a structure. Extensive structures can be shown to be of 
scale type (1, 1). Various generalizations involving partial 
operations (defined for only some pairs of objects) have been 
developed. (For a summary, see Krantz et al., 1971, chs 2, 3, 
and 5.) Not only are these structures more realistic, they are 
essential to an understanding of the partial additivity that 
arises in probability structures. These structures can be shown 
to be of scale type (0, 1). 

The representation theory for extensive structures not only 
asserts the existence of a numerical representation, but 
provides a systematic procedure (involving the Archimedean 
property) for constructing one to any preassigned degree of 
accuracy. This construction, directly or indirectly, underlies 
the extensive scales used in practice. 

The second classical case, due to J. Pfanzagl, leads to 
weighted average representations. The conditions are 
monotonicity of the operation, a form of solvability, an 
Archimedean condition, and bisymmetry [(x oy)o(u ov) - 
(x ou)o(,y ov)], which replaces associativity. One method of 
developing these representations involves two steps: first the 
bisymmetric operation is recoded as a conjoint one (see section 
5) as follows: (u, o) k'(x, y)  iff u ov 2 x 0 y; and second, the 
conjoint structure is recoded as an extensive operation on one 
of its components. This reduces the proof of the representation 
theorem to that of extensive measurement, that is to Holder's 
theorem. and so it too is constructive. 

NON-ADDITIVE REPRESENTATIONS 

The most completely understood generalization of extensive 
structures, called positive concatenation structures or PCSs for 
short, simply drops the assumption of associativity. Narens 
and Luce (see Narens, 1985) showed that this was sufficient to 
get a numerical representation and that, under a slight 
restriction which has since been removed, the structure is 
I-point unique, but not necessarily I-point homogeneous. 
Indeed, Cohen and Narens (1979) showed that the 
automorphism group is an Archimedean ordered group and so 
is isomorphic to a subgroup of the additive real numbers; it is 
homogeneous only when the isomorphism is to the full group. 
As in the extensive case, one can use the Archimedean axiom 
to construct representations, but the general case is a good 
deal more complex than the extensive one and almost certainly 
will require computer assistance to make it practical. 

For Dedekind complete PCSs that map onto Re' there 
exists a nice criterion for I-point homogeneity, namely, that 
for each positive integer and every x and y, n (x o y)  = nx ~ n y ,  
where by definition Ix  = x and nx = (n - 1)x ox. The form of 
the representations of all such homogeneous representations 
was described earlier. 

The remaining broad type of concatenation structures 
consists of those that are idempotent, i.e. for all x, xox  = x. 
The following conditions have been shown to be sufficient for 
idempotent structures to have a numerical representation 
(Luce and Narens, 1985): o is an operation that is monotonic 
and satisfies an Archimedean condition (for differences) and a 
solvability condition that says for each x and y, there exist u 
and v such that u ox = y = x ov. If, in addition, such a structure 
is Dedekind complete, it can be shown that it is N-point unique 
with N < 2. 

5. AXlOMATlZATlON OF CONJOINT STRUCTURES 

A second major class of measurement structures, widely 
familiar from both physics and the social sciences, are those, 
based on two or more independent variables effecting a 
tradeoff in the to-be-measured dependent variable. The 
familiar physical relations among three basic attributes, such 
as kinetic energy=mv2/2, where m is the mass and v the 
velocity of a moving body, illustrates both their commonness 
and importance in physics. Such conjoint structures are 
equally common in the behavioural and social sciences: 
preference between commodity bundles or between gambles; 
loudness of pure tones as a function of signal intensity and 
frequency; tradeoff between delay and amount of a reward etc. 
Although there is some theory for more than two independent 
variables in the additive case, for present purposes we confine 
attention to the two variable case (X x Y, 2). 

As for concatenation structures, the simplest case to under- 
stand is the additive one in which the major non-structural 
properties are: 

(i) Independence (monotonicity): if (x, y)  k (x ' ,  y) holds for 
some y then it holds for all y in Y, and the parallel statement 
for the other component. Note that this property allows us to 
induce natural orderings, 2, and k , ,  on X and Y. 

(ii) Thomsen condition: if (x, z) - (u, y') and (u, y)  - (x', z), 
then (x, y)  - (x', y'). 

(iii) An Archimedean condition which says, for each compon- 
ent, if {xi} is a bounded sequence and for some non-equivalent 
y and z it satisfies (x,, y)  - (x,, ,, z);then the sequence is finite. 

These, together with some solvability in the structure, are 
sufficient to prove the existence of an interval scale, additive 
representation (for a summary of various results, see Krantz et 
al., 1971, chs 6, 7 and 9). The result has been generalized to 
non-additive representations by dropping the Thomsen condi- 
tion, which leads to the existence of a non-additive numerical 
representation. The basic strategy is to define on one com- 
ponent, say X, an operation *, that captures the information 
embodied in the tradeoff between components. The induced 
structure (X, k,, *,) can be shown to consist of two PCSs 
pieced together at an element that acts like a natural zero of 
the concatenation structure. The results for PCSs are then used 
to construct the representation. As might be anticipated, D, is 
associative if and only if the conjoint structure satisfies the 
Thomsen condition. 

The important' case of a conjoint structure having an 
operation on one of its components that is coupled to the 
conjoint structure by means of a distribution law is taken up 
in section 4 of MEANINGFULNE~~ AND INVARIANCE. 

Rationality Assumptions in the Traditional Theory. As was 
noted earlier, an extensive literature on preferences among 
gambles exists. The major theoretical development is the 
axiomatization of subjective expected utility (SEU), which is a 
representation satisfying equation (1). Although such 
axiomatizations are defensible theories in terms of principles 
of rationality. they fail as descriptions of human behaviour. 
The rationality axioms invoked are of three quite distinct 
types. 

First, preference is assumed to be transitive. This assumption 
has been shown to fail in various empirical contexts (especially 
multifactor ones), with perhaps the most pervasive and still 
ill-understood example being the 'preference reversal phenom- 
enon', discovered by P. Slovic and S. Lichtenstein and 
investigated extensively by, among others, Grether and Plott 
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(1979) (see references there t o  the earlier work). Nevertheless, 
transitivity is the axiom that is least easily given up. Even 
subjects who violate it are not inclined to defend their 'errors'. 
A few attempts have been made to develop theories without it, 
but so far they are complex and have not received much 
empirical scrutiny (Bell, 1982; Fishbum, 1982, 1985). 

The second type of rationality postulates 'accounting' 
principles in which two gambles are asserted to be equivalent 
in preference because when analysed into their component 
outcomes they are seen to be identical. For  example, if x0,y is 
a gamble and (x o,y)o,z means that the event B occurs first 
and then, independent of it, A occurs, then on accounting 
grounds (x ~ ,y)o ,y  (x o,y)o,y is rational, since on both 
sides x is the outcome when A and B both occur (though in 
opposite orders) and y otherwise. One of the first 'paradoxes' 
of utility theory, that of M. Allais, is a violation of an  
accounting equation which assumes that certain probability 
calculations also take place. 

The third type of rationality condition is the extended 
sure-thing principle, equation (2). Its failure, which occurs 
regularly in experiments, is substantially the 'paradox' earlier 
pointed out by D. Ellsberg. Subjects have insisted on the 
reasonableness of their violations of this principle 
(MacCrimmon, 1967). 

Some Generalizarions of SEU. Kahneman and Tversky (1979) 
proposed a modification of the expected utility representation 
designed to accommodate the last two types of violations. 
Luce and Narens (1985) developed a somewhat related and 
more comprehensive theory, based on the dual bilinear 
representation described above. The representation takes the 
form: 

where the S' are weights, not necessarily probabilities. In such 
a structure, the accounting equation (x o,y)o,y N (x 0 ,y)o, y 
mentioned above necessarily holds. Another simple and often 
postulated accounting equation is x o A y  N  yo-,,^, which holds 
in the model iff S+(A)  + S-(-A) = 1. They show that any 
further accounting equations not derived from the latter equa- 
tion and the model force the bisymmetric case, i.e., S +  = S - .  
The extended sure-thing principle, which is not an  accounting 
equation, is equivalent to: for events A, B, C with C disjoint 
from A and B and i = +, -, 

S'(A) 3 S'(B) iff S1(A UC) 3 S'(B u c), 

whlch of course is true when the S's are probability measures. 
It follows easily that if the accounting equation x0,y - yo",x 
holds and if the S', i = +, -, are probability functions, then 
S+ = S - ,  and so the SEU model holds. 

N o  axiomatic justification has yet been given for this model, 
and it has yet to be subjected to searching empirical criticism. 
However, it does predict most of the empirical failures of the 
SEU model. 

Another interesting line of development, involving a different 
weighting than in traditional SEU, can be found in Chew 
(1980, 1983). 

See ills0 DlhENSlONS OF ECONOMIC QUANTITIES; MEANINGFULNESS AND 

WARIANCE; MEAN VALUE; TRANSPORMATIONS AND INVARIANCE. 
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